Instructor: Debashis Chatterjee Assistant Professor Dept. of Statistics Siksha Bhavana

Visva Bharati

ODD SEMESTER, 2021 Campus: Santiniketan

STATISTICS

Mathematical Analysis B.Sc 3rd semester (Take Home Assignment 1)

(Time allowed: 2 hours)

NOTE: There are 10 questions. Each question carry 5 marks.

Sequence, Convergence of infinite series

- 1. Which of the following inequality is /are false? (write with explanation)
 - (a) $\liminf x_n + \limsup y_n \le \limsup x_n + \limsup y_n$
 - (b) $\liminf x_n + \limsup y_n \le \limsup (x_n + y_n)$
 - (c) $\liminf x_n + \limsup y_n \le \limsup x_n + \limsup y_n$
 - (d) $\liminf x_n + \liminf y_n \le \liminf x_n + \liminf y_n$
- 2. Which of the following inequality is /are true? (write with explanation)
 - (a) $\liminf x_n \leq \limsup x_n$
 - (b) $\liminf x_n \leq \lim x_n$
 - (c) $\limsup x_n \ge \lim x_n$
 - (d) $\liminf x_n \ge \limsup x_n$
- **3.** Find supremum and infimum of x_n , where

)

)

(a)
$$x_n = (-50)^n$$

(b) $x_n = \frac{n^2}{n^2 + 300}$
(c) $x_n = (-1)^n + \cos(\frac{n\pi}{2})$
(d) $x_n = (-1)^n + \cos(\frac{n\pi}{4})$

- 4. (write correct option with suitable explanation) The sequence $\left\{\frac{n}{n+1}\right\}$ is
 - (a) increasing sequence
 - (b) decreasing sequence
 - (c) oscillatory
 - (d) unbounded sequence
- 5. Show the following (starting from definition of limit): (Hint: Generally, we may use binomial expansion in power type sequence)
 - (a) Show that, $n^{1/n}$ converges to 1.
 - (b) Show that, $(n+1)^n$ converges to 1.
- **6.** Let $a_n = \sqrt{n+1} \sqrt{n}$ and $b_n = \sqrt{n^4 + 1} n^2$. Then (write with explanation)
 - (a) $\sum_{n=1}^{\infty} a_n$ converges but $\sum_{n=1}^{\infty} b_n$ diverges.
 - (b) $\sum_{n=1}^{\infty} a_n$ diverges but $\sum_{n=1}^{\infty} b_n$ converges.
 - (c) both $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ converges.
 - (d) both $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ diverges.

7. State Cauchy's 1st limit theorem. Using that, Show that $\lim_{n \to \infty} \frac{1}{n} \left[1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots + \frac{1}{n^2} \right] = 0.$

- 8. State Cauchy's 2^{nd} limit theorem. Using that, Show that $\lim_{n \to \infty} \frac{(n!)^{1/n}}{n} = \frac{1}{e}$.
- **9.** Show that, for p, q > 0, the series $\sum_{i=1}^{\infty} \frac{(i+1)^p}{i^q}$ is convergent for p < q-1.

10. Show that, The series $\sum_{n=1}^{\infty} \frac{1}{\left(1+\frac{1}{n}\right)^{n^2}}$ is convergent.