Visva Bharati

ODD SEMESTER , 2021
Campus: Santiniketan

STATISTICS

Mathematical Analysis
 B.Sc 3rd semester
 (Take Home Assignment 1)

(Time allowed: 2 hours)

NOTE: There are 10 questions. Each question carry 5 marks.

Sequence, Convergence of infinite series

1. Which of the following inequality is /are false? (write with explanation)
(a) $\lim \inf x_{n}+\limsup y_{n} \leq \limsup x_{n}+\limsup y_{n}$
(b) $\liminf x_{n}+\limsup y_{n} \leq \limsup \left(x_{n}+y_{n}\right)$
(c) $\lim \inf x_{n}+\lim \sup y_{n} \leq \lim \sup x_{n}+\lim \sup y_{n}$
(d) $\liminf x_{n}+\liminf y_{n} \leq \liminf x_{n}+\liminf y_{n}$
2. Which of the following inequality is /are true? (write with explanation)
(a) $\liminf x_{n} \leq \limsup x_{n}$
(b) $\lim \inf x_{n} \leq \lim x_{n}$
(c) $\lim \sup x_{n} \geq \lim x_{n}$
(d) $\liminf x_{n} \geq \limsup x_{n}$
3. Find supremum and infimum of x_{n}, where
(a) $x_{n}=(-50)^{n}$
(b) $x_{n}=\frac{n^{2}}{n^{2}+300}$
(c) $x_{n}=(-1)^{n}+\cos \left(\frac{n \pi}{2}\right)$
(d) $x_{n}=(-1)^{n}+\cos \left(\frac{n \pi}{4}\right)$
4. (write correct option with suitable explanation)

The sequence $\left\{\frac{n}{n+1}\right\}$ is
(a) increasing sequence
(b) decreasing sequence
(c) oscillatory
(d) unbounded sequence
5. Show the following (starting from definition of limit):
(Hint: Generally, we may use binomial expansion in power type sequence)
(a) Show that, $n^{1 / n}$ converges to 1 .
(b) Show that, $(n+1)^{n}$ converges to 1 .
6. Let $a_{n}=\sqrt{n+1}-\sqrt{n}$ and $b_{n}=\sqrt{n^{4}+1}-n^{2}$. Then (write with explanation)
(a) $\sum_{n=1}^{\infty} a_{n}$ converges but $\sum_{n=1}^{\infty} b_{n}$ diverges.
(b) $\sum_{n=1}^{\infty} a_{n}$ diverges but $\sum_{n=1}^{\infty} b_{n}$ converges.
(c) both $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ converges.
(d) both $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ diverges.
7. State Cauchy's $1^{\text {st }}$ limit theorem.

Using that, Show that $\lim _{n \rightarrow \infty} \frac{1}{n}\left[1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\cdots+\frac{1}{n^{2}}\right]=0$.
8. State Cauchy's $2^{\text {nd }}$ limit theorem.

Using that, Show that $\lim _{n \rightarrow \infty} \frac{(n!)^{1 / n}}{n}=\frac{1}{e}$.
9. Show that, for $p, q>0$, the series $\sum_{i=1}^{\infty} \frac{(i+1)^{p}}{i^{q}}$ is convergent for $p<q-1$.
10. Show that, The series $\sum_{n=1}^{\infty} \frac{1}{\left(1+\frac{1}{n}\right)^{n^{2}}}$ is convergent.

